
PIG the 2nd
Arend Hintze

relational operators
• FOREACH

• FILTER

• ORDER BY

• SPLIT

• UNION

• DISTINCT

• GROUP

• JOIN

dataset:
A,1,2,3,m
B,1,2,3,m
C,2,2,2,f

…

FOREACH

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
sums = FOREACH data GENERATE name,g1+g2+g3;	
DUMP sums;	

FILTER

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
goodOnes = FILTER data BY g2>10;	
DUMP goodOnes;	

ORDER BY

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
myOrder = ORDER data BY name DESC;	
DUMP myOrder;	

SPLIT

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
sums = FOREACH data GENERATE name,g1+g2+g3;	
SPLIT sums INTO high if $1>100, low if $1<=100;	
DUMP low;	
DUMP high;	

UNION

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
sums = FOREACH data GENERATE name,g1+g2+g3;	
SPLIT sums INTO high if $1>100, low if $1<=100;	
DUMP low;	
DUMP high;	
myU = UNION low,high;	
DUMP myU;

DISTINCT

GROUP

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
genders = GROUP data BY gender;	
DUMP genders;

JOIN (inner join)

dataA = LOAD ‘gradesA.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
dataB = LOAD ‘gradesB.csv’ using PigStorage(‘,’) AS 	
	 	 	 	 (name,g1:int,g2:int,g3:int,gender);	
j = JOIN dataA BY name,dataB BY name;

Built-In Functions

CASE sensitive!

FLATTEN
• flattens a nested datatype (bags for example)

list of Bags -> list of all Bag elements

WordCount in PIG
data = LOAD ‘file0’;	
words = FOREACH data GENERATE TOKENIZE($0) AS wordlist;	
allwords = FOREACH words GENERATE FLATTEN(wordlist),1;	
grp = GROUP allwords BY $0;	
counts = FOREACH grp GENERATE $0,SUM($1.$1);	
DUMP counts;

Step 1:

Step 2:

Step 3:

Step 4:

For the first row/record: (a, { (a,1), (a,1)})
$0 = a
$1 = (a,1)
$1.$1 = 1 => sum($1.$1) = 2

Step 5:

Macros
• Macros provide a way to define reusable code (functions)

• DEFINE <macroName> (<args>) RETURNS <returnValue>
{ theCode }

• Wordcount Example:

DEFINE wordcount(text) RETURNS counts {  
	 tokens = foreach $text generate TOKENIZE($0) as terms; 
	 wordlist = foreach tokens generate FLATTEN(terms) as word,1 as freq;	
	 groups = group wordlist by word; 
 $counts = foreach groups generate group as word,SUM(wordlist.freq) as freq;	
}	

