P|lG the 2nd

Arend Hintze

relational operators

« FOREACH

e FILTER

. ORDER BY dataset:
A,1,2,3,m

e SPLIT B1.23m

« UNION C,2,2,2,f

e DISTINCT

e GROUP

« JOIN

FOREACH

FOREACH alias = FOREACH alias GENERATE expression [,expression

data

sums
DUMP

..] [AS schemal;

Loop through each tuple and generate new tuple(s). Usually applied to transform
columns of data, such as adding or deleting fields.

One can optionally specify a schema for the output relation; for example,
naming new fields.

LOAD ‘grades.csv’ using PigStorage(‘,’) AS
(name,gl:1int,g2:1nt,g3:1nt,gender);

= FOREACH data GENERATE name,gl+g2+g3;

sums;

-ILTER

FILTER | alias = FILTER alias BY expression;
Selects tuples based on Boolean expression. Used to select tuples that you
want or remove tuples that you don’t want.

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS
(name,gl:int,g2:1nt,g3:1nt,gender);

goodOnes = FILTER data BY g2>10;

DUMP goodOnes;

ORDER BY

ORDER alias = ORDER alias BY { * [ASC|DESC] | field_alias
[ASC|DESC] [, field_alias [ASC|DESC] ..] } [PARALLEL n];
Sort a relation based on one or more fields. If you retrieve the relation right

after the ORDER operation (by DUMP or STORE), it's guaranteed to be in the
desired sorted order. Further processing (FILTER, DISTINCT, etc.) may destroy

the ordering.

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS
(name,gl:int,g2:1nt,g3:1nt,gender);

myOrder = ORDER data BY name DESC;

DUMP myOrder;

SPLIT

SPLIT SPLIT alias INTO alias IF expression, alias IF
expression [, alias IF expression ...];

Splits a relation into two or more relations, based on the given Boolean
expressions. Note that a tuple can be assigned to more than one relation, or to

none at all.

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS
(name,gl:1int,g2:1nt,g3:1nt,gender);

sums = FOREACH data GENERATE name,gl+g2+g3;

SPLIT sums INTO high if $1>100, low if $1<=100;

DUMP low;

DUMP h1igh;

UN\ON

UNION| alias = UNION alias, alias, , alias ...
Creates the union of two or more relatlons Note that

® As with any relation, there’s no guarantee to the order of tuples
® Doesn’t require the relations to have the same schema or even the same
number of fields

® Doesn’t remove duplicate tuples

data

LOAD ‘grades.csv’ using PigStorage(‘,’) AS
(name,gl:int,g2:1nt,g3:1nt,gender);

sums = FOREACH data GENERATE name,gl+g2+g3;

SPLIT sums INTO high if $1>100, low if $1<=100;

DUMP low;

DUMP h1igh;

myU = UNION low,high;

DUMP myU;

DISTINCT

alias = DISTINCT alias
Remove duplicate tuples.

DISTINCT

GROUP

GROUP | alias = GROUP alias { [ALL] | [BY {[field_alias [,
field alias]] | * | [expression]] } [PARALLEL n];

Within a single relation, group together tuples with the same group key. Usually
the group key is one or more fields, but it can also be the entire tuple (*) or an
expression. One can also use GROUP alias ALL to group all tuples into
one group.

The output relation has two fields with autogenerated names. The first field is
always named “group” and it has the same type as the group key. The second
field takes the name of the input relation and is a bag type. The schema for the
bag is the same as the schema for the input relation.

data = LOAD ‘grades.csv’ using PigStorage(‘,’) AS
(name,gl:1int,g2:1nt,g3:1nt,gender);

genders = GROUP data BY gender;

DUMP genders;

JOIN (inner [oin

JOIN alias = JOIN alias BY field alias, alias BY field alias [,
alias BY field alias ..] [USING "replicated"] [PARALLEL n];

Compute inner join of two or more relations based on common field values.
When using the replicated option, Pig stores all relations after the first one in
memory for faster processing. You have to ensure that all those smaller relations
together are indeed small enough to fit in memory.

Under JOIN, when the input relations are flat, the output relation is also flat. In
addition, the number of fields in the output relation is the sum of the number of
fields in the input relations, and the output relation’s schema is a concatenation
of the input relations’ schemas.

LOAD ‘gradesA.csv’ using PigStorage(‘,’) AS
(name,gl:1int,g2:1nt,g3:1nt,gender);

LOAD ‘gradesB.csv’ using PigStorage(‘,’) AS
(name,gl:1int,g2:1nt,g3:1nt,gender);

J = JOIN dataA BY name,dataB BY name;

dataA

dataB

AVG

CONCAT
COUNT
DIFF

MIN

SIZE

SUM
TOKENIZE

IsEmpty

Bullt-ln Functions

Calculate the average of numeric values in a single-column bag.

Concatenate two strings (chararray) ortwo bytearrays.
Calculate the number of tuples in a bag. See SIZE for other data types.

Compare two fields in a tuple. If the two fields are bags, it will return tuples that are
in one bag but not the other. If the two fields are values, it will emit tuples where
the values don’t match.

Calculate the maximum value in a single-column bag. The column must be a
numeric type or a chararray.

Calculate the minimum value in a single-column bag. The column must be a
numeric type or a chararray.

Calculate the number of elements. For a bag it counts the number of tuples. For a
tuple it counts the number of elements. For a chararray it counts the number of
characters. For a bytearray it counts the number of bytes. For numeric scalars it
always returns 1.

Calculate the sum of numeric values in a single-column bag.

Split a string (chararray) into a bag of words (each word is a tuple in the bag).
Word separators are space, double quote ("), comma, parentheses, and asterisk (¥).

Check if a bag or map is empty.

CASE sensitive!

~LATTEN

* flattens a nested datatype (bags for example)
ist of Bags -> list of all Bag elements

grunt> wordlist = foreach words generate FLATTEN (wordlist);
wordlist = foreach words generate FLATTEN (wordlist):;
grunt> dump wordlist;

dump wordlist;

(This)

(is)

(2)

(sample)

(document.)

(Each)

(line)

(has)

(2)

(separate)

(sentence.)

WordCount in PIG

data = LOAD ‘file@’;

words = FOREACH data GENERATE TOKENIZE($@) AS wordlist;
allwords = FOREACH words GENERATE FLATTEN(wordlist),1;
grp = GROUP allwords BY $0;

counts = FOREACH grp GENERATE $0,SUM($1.%$1);

DUMP counts;

Step 1:

grunt> docs = load 'document.txt';
docs = load 'document.txt';

grunt> dump docs;

dump docs;

(This 1s a sample document.)

(Each line has a separate sentence.)
(This 1s the second last line.)
(This 1s the last line.)

grunt>

Step 2:

grunt> words = foreach docs generate TOKENIZE ($0) as wordlist;
words = foreach docs generate TOKENIZE ($0) as wordlist;

grunt> dump words;

dump words;

({ (This), (1is), (a), (sample), (document.) })

({ (Each), (1ine), (has), (a), (separate), (sentence.) })

({ (This), (1s), (the), (second), (1last), (1ine.) })

({ (This), (1s), (the), (1ast), (11ine.) })

Step 3:

grunt> allwords = FOREACH words GENERATE FLATTEN (wordlist), 1;
allwords = FOREACH words GENERATE FLATTEN (wordlist), 1:;
grunt> dump allwords;

dump allwords;

(This, 1)

(is,1)

(a,1)

(sample, 1)

(document., 1)

(Each, 1)

(l1ine, 1)

(has, 1)

(a,1)

(separate, 1)

(sentence., 1)

Step 4:

grp = group allwords by $0;

grunt> dump grp:;

dump grp:;

(a,{(a,1), (a,1)})
(is,{(1s,1), (1s5,1), (15,1)})
(has, { (has, 1) })

(Ehe, { (the, 1), (the,1) })
(Each, { (Each, 1) })

(This, { (This, 1), (This, 1), (This, 1) })
(last, {(last,1), (1last,1) })

For the first row/record: (a, {(a,1), (a,1)})
$0=a
$1=(a1)
$1.$1=1=> sum($1.$1)=2

Step 5:

grunt> counts = foreach grp generate $0, SUM($1.51);
counts = foreach grp generate $0, SUM($1.51);
grunt> dump counts;

dump counts;

(a,2)

(is,3)

(has, 1)

(the, 2)

(Each, 1)

(This, 3)

(last, 2)

(line, 1)

(line., 2)

(sample, 1)

(second, 1)

(separate, 1)

Viacros

 Macros provide a way to define reusable code (functions)

 DEFINE <macroName> (<args>) RETURNS <returnValue>
{ theCode }

* Wordcount Example:

DEFINE wordcount(text) RETURNS counts {
tokens = foreach $text generate TOKENIZE($Q) as terms;
wordlist = foreach tokens generate FLATTEN(terms) as word,l1 as freq;
groups = group wordlist by word;
$counts = foreach groups generate group as word,SUM(wordlist.freq) as freq;

